Solution Bank

Exercise 5A

1 Integrating both sides of the equation and including a constant:

 $\frac{dy}{dx} = 2x$ $\Rightarrow y = \int 2x \, dx$ $\Rightarrow y = x^2 + c \quad \text{where } c \text{ is a constant}$

The family of solution curves are parabola.

Sketching the solution curves for c = -2, -1, 0, 1, 2 and 3 gives:

Solution Bank

2 Separating the variables and integrating:

 $\frac{dy}{dx} = y$ $\Rightarrow \int \frac{1}{y} dy = \int 1 dx$ $\Rightarrow \ln y = x + c \quad \text{where } c \text{ is a constant}$ $\Rightarrow y = e^{x+c} = e^c \times e^x$ $\Rightarrow y = Ae^x \quad \text{where } A \text{ is a constant} (A = e^c)$

The family of solution curves are exponential curves. Sketching the solution curves for A = -3, -2, -1, 1, 2 and 3 gives:

Solution Bank

Solution Bank

5 Separating the variables and integrating:

$$\frac{dy}{dx} = \frac{2y}{x}$$
$$\Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x} dx$$
$$\Rightarrow \ln|y| = 2\ln|x| + c$$

Expressing the constant as $\ln |\!\mathcal{A}|$ and simplifying using the laws of logarithms:

 $\ln |y| = 2 \ln |x| + \ln |A|$ $\Rightarrow \ln |y| = \ln x^{2} + \ln |A|$ using the power law $\Rightarrow \ln |y| = \ln |A|x^{2}$ using the multiplication law $\Rightarrow y = Ax^{2}$

The family of solution curves are parabola. Sketching the solution curves for $A = -2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2$ gives:

Solution Bank

6 Separating the variables and integrating:

$$\frac{dy}{dx} = \frac{x}{y}$$

$$\Rightarrow \int y \, dy = \int x \, dx$$

$$\Rightarrow \frac{y^2}{2} = \frac{x^2}{2} + c \quad \text{or} \quad y^2 - x^2 = 2c$$

 $y^2 - x^2 = 0 \Rightarrow (y - x)(y + x) = 0$, and the graph of this equation are straight lines y = x and y = -x $y^2 - x^2 = 2c$ for $c \neq 0$ is a hyperbola with asymptotes y = x and y = -xSketching some of the solution curves gives:

Solution Bank

7 $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{y}$ $\int e^{-y} dy = \int dx$ $-e^{-y} = x + c$ $e^{-y} = -x - c$ $-y = \ln\left(-x - c\right)$ $y = -\ln\left(-x - c\right)$ $=\ln\left(-x-c\right)^{-1}$ $=\ln\frac{1}{\left(-x-c\right)}$ $y = \ln \frac{1}{-x}$ $y = \ln \frac{1}{1-x}$ $y = \ln \frac{1}{(-1-x)}$ $y = \ln \frac{1}{2-x}$ $y = \ln(\frac{1}{-2})$ 3 x 6 5 $\dot{2}$ 2 -3 4 $8 \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x(x+1)}$ $\int \frac{1}{v} \, \mathrm{d}y = \int \frac{1}{x(x+1)} \, \mathrm{d}x$ $=\int \frac{1}{x} dx - \int \frac{1}{x+1} dx$ $\ln y = \ln x - \ln (x+1) + c$ Let $c = \ln B$ $\ln y = \ln x + \ln (x+1)^{-1} + \ln B$ $=\ln\left(\frac{Bx}{x+1}\right)$ уı 4-3-2. 1 \hat{x} 0

Solution Bank

9 $\frac{dy}{dx} = \cos x$ $\Rightarrow y = \sin x + c$ The family of solution curves are sin curves. The graph of $y = \sin x + c$ is a translation of $y = \sin x$ by the vector $\begin{pmatrix} 0 \\ c \end{pmatrix}$

Sketching some of the solution curves gives:

10 Separating the variables and integrating:

$$\frac{dy}{dx} = y \cot x \quad 0 < x < \pi$$

$$\Rightarrow \int \frac{1}{y} dy = \int \frac{\cos x}{\sin x} dx$$

$$\Rightarrow \ln|y| = \ln|\sin x| + c \quad \text{integrating } \frac{\cos x}{\sin x} \text{ using the reverse chain rule}$$
Expression the constant of held and simplifying using the large of here.

Expressing the constant as $\ln|A|$ and simplifying using the laws of logarithms: $\ln|y| = \ln|\sin x| + \ln|A|$

$$\Rightarrow \ln|y| = \ln|A\sin x|$$

 $\Rightarrow y = A \sin x$

The family of solution curves are sin curves for $0 < x < \pi$ with varying amplitudes. Sketching some of the solution curves gives:

Solution Bank

Solution Bank

12 $\frac{dx}{dt} = x(1-x)$ where 0 < x < 1 $\int \frac{1}{x(1-x)} \, \mathrm{d}x = \int \mathrm{d}t$ $\int \frac{1}{x} dx + \int \frac{1}{1-x} dx = \int dt$ $\int \frac{1}{x} \, \mathrm{d}x - \int \frac{-1}{1-x} \, \mathrm{d}x = \int \mathrm{d}t$ $\ln x - \ln \left(1 - x \right) = t + B$ $\ln\left(\frac{x}{1-x}\right) = t + B$ $\frac{x}{1-x} = e^{t+B}$ $= e^t e^B$ $= Ae^t$ where $A = e^B$ $x = (1 - x) A e^{t}$ $= Ae^{t} - Axe^{t}$ $x + Axe^t = Ae^t$ $x(1+Ae^t) = Ae^t$ $x = \frac{Ae^t}{1 + Ae^t}$ $x = \frac{e^t}{1 + e^t}$ x_{i} 1 $x = \frac{3e^t}{1 + 3e^t}$ $\frac{\frac{1}{2}e^t}{+\frac{1}{2}e^t}$ 0.5 $x = \frac{1}{1}$

0

t

Further Pure Maths 2 Solution Bank

13
$$\frac{dy}{dx} = \frac{y}{2x}$$
$$\int \frac{1}{y} dy = \frac{1}{2} \int \frac{1}{x} dx$$
$$\ln y = \frac{1}{2} \ln x + c$$
$$= \ln \sqrt{x} + \ln B \quad \text{where } c = \ln B$$
$$= \ln B \sqrt{x}$$
$$y = B \sqrt{x}$$
$$y^{2} = B^{2} x$$
$$= 4ax \quad \text{where } B^{2} = 4a$$

Solution Bank

$$14 \frac{dy}{dx} = -\frac{xy}{9-x^2}$$

$$\int \frac{1}{y} dy = \int \frac{-x}{9-x^2} dx$$

$$= \frac{1}{2} \int \frac{-2x}{9-x^2} dx$$

$$\ln y = \frac{1}{2} \ln (9-x^2) + c$$

$$= \ln (9-x^2)^{\frac{1}{2}} + \ln B$$

$$= \ln B (9-x^2)^{\frac{1}{2}}$$

$$y = B (9-x^2)^{\frac{1}{2}}$$

$$y^2 = B^2 (9-x^2)$$

$$= 9B^2 - B^2 x^2$$

$$y^2 + B^2 x^2 = 9B^2$$
Let $k = B^2$

$$y^2 + kx^2 = 9k$$

- a For the point (2, 5) $5^{2} + k(2)^{2} = 9k$ k = 5 $y^{2} + 5x^{2} = 45$
- b

