Further Pure Maths 2

Exercise 5A

1 Integrating both sides of the equation and including a constant:
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x$
$\Rightarrow y=\int 2 x \mathrm{~d} x$
$\Rightarrow y=x^{2}+c \quad$ where c is a constant
The family of solution curves are parabola.
Sketching the solution curves for $c=-2,-1,0,1,2$ and 3 gives:

Further Pure Maths 2

2 Separating the variables and integrating:

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=y \\
& \Rightarrow \int \frac{1}{y} \mathrm{~d} y=\int 1 \mathrm{~d} x \\
& \Rightarrow \ln y=x+c \quad \text { where } c \text { is a constant } \\
& \Rightarrow y=\mathrm{e}^{x+c}=\mathrm{e}^{c} \times \mathrm{e}^{x} \\
& \Rightarrow y=A \mathrm{e}^{x} \quad \text { where } A \text { is a constant }\left(A=\mathrm{e}^{c}\right)
\end{aligned}
$$

The family of solution curves are exponential curves.
Sketching the solution curves for $A=-3,-2,-1,1,2$ and 3 gives:

$3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}$
$\int \mathrm{d} y=\int x^{2} \mathrm{~d} x$
$y=\frac{1}{3} x^{3}+c$

$4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}$

$$
\int \mathrm{d} y=\int \frac{1}{x} \mathrm{~d} x
$$

$$
y=\ln x+c
$$

$$
\text { Let } c=\ln A
$$

$$
y=\ln x+\ln A
$$

$$
=\ln A x
$$

Further Pure Maths 2

5 Separating the variables and integrating:
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y}{x}$
$\Rightarrow \int \frac{1}{y} \mathrm{~d} y=\int \frac{2}{x} \mathrm{~d} x$
$\Rightarrow \ln |y|=2 \ln |x|+c$
Expressing the constant as $\ln |A|$ and simplifying using the laws of logarithms:
$\ln |y|=2 \ln |x|+\ln |A|$
$\Rightarrow \ln |y|=\ln x^{2}+\ln |A| \quad$ using the power law
$\Rightarrow \ln |y|=\ln |A| x^{2} \quad$ using the multiplication law
$\Rightarrow y=A x^{2}$
The family of solution curves are parabola.
Sketching the solution curves for $A=2,-1,-\frac{1}{2}, \frac{1}{2}, 1,2$ gives:

Further Pure Maths 2

6 Separating the variables and integrating:

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y} \\
& \Rightarrow \int y \mathrm{~d} y=\int x \mathrm{~d} x \\
& \Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+c \quad \text { or } \quad y^{2}-x^{2}=2 c
\end{aligned}
$$

$y^{2}-x^{2}=0 \Rightarrow(y-x)(y+x)=0$, and the graph of this equation are straight lines $y=x$ and $y=-x$
$y^{2}-x^{2}=2 c$ for $c \neq 0$ is a hyperbola with asymptotes $y=x$ and $y=-x$
Sketching some of the solution curves gives:

$7 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{y}$
$\int \mathrm{e}^{-y} \mathrm{~d} y=\int \mathrm{d} x$
$-\mathrm{e}^{-y}=x+c$
$\mathrm{e}^{-y}=-x-c$
$-y=\ln (-x-c)$
$y=-\ln (-x-c)$
$=\ln (-x-c)^{-1}$
$=\ln \frac{1}{(-x-c)}$

$8 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{y}{x(x+1)}$

$$
\begin{aligned}
\int \frac{1}{y} \mathrm{~d} y & =\int \frac{1}{x(x+1)} \mathrm{d} x \\
& =\int \frac{1}{x} \mathrm{~d} x-\int \frac{1}{x+1} \mathrm{~d} x
\end{aligned}
$$

$\ln y=\ln x-\ln (x+1)+c$
Let $c=\ln B$
$\ln y=\ln x+\ln (x+1)^{-1}+\ln B$

$$
=\ln \left(\frac{B x}{x+1}\right)
$$

$9 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cos x$

$$
\Rightarrow y=\sin x+c
$$

The family of solution curves are sin curves.
The graph of $y=\sin x+c$ is a translation of $y=\sin x$ by the vector $\binom{0}{c}$
Sketching some of the solution curves gives:

10 Separating the variables and integrating:
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y \cot x \quad 0<x<\pi$
$\Rightarrow \int \frac{1}{y} \mathrm{~d} y=\int \frac{\cos x}{\sin x} \mathrm{~d} x$
$\Rightarrow \ln |y|=\ln |\sin x|+c \quad$ integrating $\frac{\cos x}{\sin x}$ using the reverse chain rule
Expressing the constant as $\ln |A|$ and simplifying using the laws of logarithms:
$\ln |y|=\ln |\sin x|+\ln |A|$
$\Rightarrow \ln |y|=\ln |A \sin x|$
$\Rightarrow y=A \sin x$
The family of solution curves are sin curves for $0<x<\pi$ with varying amplitudes.
Sketching some of the solution curves gives:

$11 \frac{\mathrm{~d} y}{\mathrm{~d} t}=\sec ^{2} t$ where $-\frac{\pi}{2}<t<\frac{\pi}{2}$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\tan t) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\sin t}{\cos t}\right) \\
& =\frac{\cos t \cos t+\sin t \sin t}{\cos ^{2} t} \\
& =\frac{1}{\cos ^{2} t} \\
& =\sec ^{2} t
\end{aligned}
$$

$$
\int \mathrm{d} y=\int \sec ^{2} t \mathrm{~d} t
$$

$$
y=\tan t+c
$$

Further Pure Maths 2

$12 \frac{\mathrm{~d} x}{\mathrm{~d} t}=x(1-x)$ where $0<x<1$

$$
\begin{aligned}
& \int \frac{1}{x(1-x)} \mathrm{d} x=\int \mathrm{d} t \\
& \int \frac{1}{x} \mathrm{~d} x+\int \frac{1}{1-x} \mathrm{~d} x=\int \mathrm{d} t \\
& \int \frac{1}{x} \mathrm{~d} x-\int \frac{-1}{1-x} \mathrm{~d} x=\int \mathrm{d} t \\
& \ln x-\ln (1-x)=t+B \\
& \ln \left(\frac{x}{1-x}\right)=t+B \\
& \begin{array}{r}
x \\
1-x
\end{array} \mathrm{e}^{t+B} \\
& \quad=\mathrm{e}^{t} \mathrm{e}^{B} \\
& \quad=A \mathrm{e}^{t} \quad \text { where } A=\mathrm{e}^{B} \\
& x=(1-x) A \mathrm{e}^{t} \\
& =A \mathrm{e}^{t}-A x \mathrm{e}^{t} \\
& x+A x \mathrm{e}^{t}=A \mathrm{e}^{t} \\
& x\left(1+A \mathrm{e}^{t}\right)=A \mathrm{e}^{t} \\
& x=\frac{A \mathrm{e}^{t}}{1+A \mathrm{e}^{t}}
\end{aligned}
$$

Further Pure Maths 2

$13 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{y}{2 x}$

$$
\begin{aligned}
& \int \frac{1}{y} \mathrm{~d} y=\frac{1}{2} \int \frac{1}{x} \mathrm{~d} x \\
& \begin{aligned}
\ln y & =\frac{1}{2} \ln x+c \\
\quad & =\ln \sqrt{x}+\ln B \quad \text { where } c=\ln B \\
& =\ln B \sqrt{x}
\end{aligned} \\
& \begin{aligned}
y= & B \sqrt{x} \\
y^{2} & =B^{2} x \\
& =4 a x \text { where } B^{2}=4 a
\end{aligned}
\end{aligned}
$$

a

b $\operatorname{For}(1,3)$

$$
\begin{aligned}
& 3^{2}=4 a(1) \\
& a=\frac{9}{4} \\
& y^{2}=9 x
\end{aligned}
$$

Further Pure Maths 2

$14 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{x y}{9-x^{2}}$

$$
\begin{aligned}
& \begin{aligned}
\int \frac{1}{y} \mathrm{~d} y & =\int \frac{-x}{9-x^{2}} \mathrm{~d} x \\
& =\frac{1}{2} \int \frac{-2 x}{9-x^{2}} \mathrm{~d} x
\end{aligned} \\
& \begin{aligned}
\ln y & =\frac{1}{2} \ln \left(9-x^{2}\right)+c \\
& =\ln \left(9-x^{2}\right)^{\frac{1}{2}}+\ln B \\
& =\ln B\left(9-x^{2}\right)^{\frac{1}{2}}
\end{aligned} \\
& \begin{aligned}
& y= B\left(9-x^{2}\right)^{\frac{1}{2}} \\
& y^{2}=B^{2}\left(9-x^{2}\right) \\
&=9 B^{2}-B^{2} x^{2} \\
& y^{2}+B^{2} x^{2}=9 B^{2} \\
& \text { Let } k=B^{2} \\
& y^{2}+k x^{2}=9 k
\end{aligned}
\end{aligned}
$$

a For the point $(2,5)$

$$
\begin{aligned}
& 5^{2}+k(2)^{2}=9 k \\
& k=5 \\
& y^{2}+5 x^{2}=45
\end{aligned}
$$

b

